Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 30(6): 740-746, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35217804

RESUMO

Northern Pakistan is home to many diverse ethnicities and languages. The region acted as a prime corridor for ancient invasions and population migrations between Western Eurasia and South Asia. Kho, one of the major ethnic groups living in this region, resides in the remote and isolated mountainous region in the Chitral Valley of the Hindu Kush Mountain range. They are culturally and linguistically distinct from the rest of the Pakistani population groups and their genetic ancestry is still unknown. In this study, we generated genome-wide genotype data of ~1 M loci (Illumina WeGene array) for 116 unrelated Kho individuals and carried out comprehensive analyses in the context of worldwide extant and ancient anatomically modern human populations across Eurasia. The results inferred that the Kho can trace a large proportion of their ancestry to the population who migrated south from the Southern Siberian steppes during the second millennium BCE ~110 generations ago. An additional wave of gene flow from a population carrying East Asian ancestry was also identified in the Kho that occurred ~60 generations ago and may possibly be linked to the expansion of the Tibetan Empire during 7th to 9th centuries CE (current era) in the northwestern regions of the Indian sub-continent. We identified several candidate regions suggestive of positive selection in the Kho, that included genes mainly involved in pigmentation, immune responses, muscular development, DNA repair, and tumor suppression.


Assuntos
Etnicidade , Genética Populacional , Povo Asiático/genética , Etnicidade/genética , Fluxo Gênico , Humanos , Paquistão
3.
Leg Med (Tokyo) ; 54: 101987, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34768042

RESUMO

In kinship tests, the investigating of the forensic STRs usually provides decisive information to resolve relationship cases. We describe a parentage case with 3 genetic incompatibilities (D6S1043, D18S51 and D2S1338) between the child and alleged parent. With 90 STR loci and 100 SNP loci, the massively parallel sequencing (MPS)-based genotyping results support the certainty of parentage, and the mismatched alleles were considered to be mutations. MPS can provide additional allele sequence structures that can be used to infer the origins of the mutations. SNPs as supplementary markers can provide effective information to give an unequivocal statement of the parentage.


Assuntos
Impressões Digitais de DNA , Polimorfismo de Nucleotídeo Único , Criança , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
4.
Int J Legal Med ; 136(2): 447-464, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34741666

RESUMO

Short tandem repeats (STRs) are the preferred genetic markers in forensic DNA analysis, routinely measured by capillary electrophoresis (CE) method based on the fragment length features. While, the massive parallel sequencing (MPS) technology could simultaneously target a large number of intriguing forensic STRs, bypassing the intrinsic limitations of amplicon size separation and accessible fluorophores in CE, which is efficient and promising for enabling the identification of forensic biological evidence. Here, we developed a novel MPS-based Forensic Analysis System Multiplecues SetB Kit of 133-plex forensic STR markers (52 STRs and 81 Y-STRs) and one Y-InDel (M175) based on multiplex PCR and single-end 400 bp sequencing strategy. This panel was subjected to developmental validation studies according to the SWGDAM Validation Guidelines. Approximately 2185 MPS-based reactions using 6 human DNA standards and 8 male donors were conducted for substrate studies (filter paper, gauze, cotton swab, four different types of FTA cards, peripheral venous blood, saliva, and exfoliated cells), sensitivity studies (from 2 ng down to 0.0625 ng), mixture studies (two-person DNA mixtures), PCR inhibitor studies (seven commonly encountered PCR inhibitors), species specificity studies (11 non-human species), and repeatability studies. Results of concordance studies (413 Han males and 6 human DNA standards) generated by STRait Razor and in-house Python scripts indicated 99.98% concordance rate in STR calling relative to CE for STRs between 41,900 genotypes at 100 STR markers. Moreover, the limitations of present studies, the nomenclature rules and forensic MPS applications were also described. In conclusion, the validation studies based on ~ 2200 MPS-based and ~ 2500 CE-based DNA profiles demonstrated that the novel MPS-based panel meets forensic DNA quality assurance guidelines with robust, reliable, and reproducible performance on samples of various quantities and qualities, and the STR nomenclature rules should be further regulated to integrate the inconformity between MPS-based and CE-based methods.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Impressões Digitais de DNA , Genética Forense/métodos , Humanos , Masculino , Reação em Cadeia da Polimerase Multiplex , Análise de Sequência de DNA , Especificidade da Espécie
5.
J Hum Genet ; 67(3): 175-180, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34531527

RESUMO

The Kyrgyz are a trans-border ethnic group, mainly living in Kyrgyzstan. Previous genetic investigations of Central Asian populations have repeatedly investigated the Central Asian Kyrgyz. However, from the standpoint of human evolution and genetic diversity, Northwest Chinese Kyrgyz is one of the more poorly studied populations. In this study, we analyzed the non-recombining portion of the Y-chromosome from 298 male Kyrgyz samples from Xinjiang Uygur Autonomous Region in northwestern China, using a high-resolution analysis of 108 biallelic markers and 17 or 24 STRs. First, via a Y-SNP-based PCA plot, Northwest Chinese Kyrgyz tended to cluster with other Kyrgyz population and are located in the West Asian and Central Asian group. Second, we found that the Northwest Chinese Kyrgyz display a high proportion of Y-lineage R1a1a1b2a2a-Z2125, related to Bronze Age Siberian, and followed by Y-lineage C2b1a3a1-F3796, related to Medieval Niru'un Mongols, such as Uissun tribe from Kazakhs. In these two dominant lineages, two unique recent descent clusters have been detected via NETWORK analysis, respectively, but they have nearly the same TMRCA ages (about 13th-14th centuries). This finding once again shows that the expansions of Mongol Empire had a striking effect on the Central Asian gene pool.


Assuntos
Cromossomos Humanos Y , Genética Populacional , Povo Asiático/genética , China , Cromossomos Humanos Y/genética , Etnicidade , Haplótipos , Humanos , Masculino
6.
Front Genet ; 12: 745508, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671385

RESUMO

The MGISEQ-2000 sequencer is widely used in various omics studies, but the performance of this platform for paleogenomics has not been evaluated. We here compare the performance of MGISEQ-2000 with the Illumina X-Ten on ancient human DNA using four samples from 1750BCE to 60CE. We found there were only slight differences between the two platforms in most parameters (duplication rate, sequencing bias, θ, δS, and λ). MGISEQ-2000 performed well on endogenous rate and library complexity although X-Ten had a higher average base quality and lower error rate. Our results suggest that MGISEQ-2000 and X-Ten have comparable performance, and MGISEQ-2000 can be an alternative platform for paleogenomics sequencing.

7.
Front Genet ; 12: 690504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220963

RESUMO

Maoming is located in the southwest region of Guangdong Province and is the cradle of Gaoliang culture, which is the representative branch of Lingnan cultures. Historical records showed that the amalgamations between Gaoliang aborigines and distinct ethnic minorities had some influences on the shaping of Gaoliang culture, especially for the local Tai-kadai language-speaking Baiyue and Han Chinese from Central China. However, there is still no exact genetic evidence for the influences on the genetic pool of Maoming Han, and the genetic relationships between Maoming Han and other Chinese populations are still unclear. Hence, in order to get a better understanding of the paternal genetic structures and characterize the forensic features of 27 Y-chromosomal short tandem repeats (Y-STRs) in Han Chinese from Guangdong Maoming, we firstly applied the AmpFLSTR® Yfiler® Plus PCR Amplification Kit (Thermo Fisher Scientific, Waltham, MA, United States) to genotype the haplotypes in 431 Han males residing in Maoming. A total of 263 different alleles were determined across all 27 Y-STRs with the corresponding allelic frequencies from 0.0004 to 0.7401, and the range of genetic diversity (GD) was 0.4027 (DYS391) to 0.9596 (DYS385a/b). In the first batch of 27 Yfiler data in Maoming Han, 417 distinct haplotypes were discovered, and nine off-ladder alleles were identified at six Y-STRs; in addition, no copy number variant or null allele was detected. The overall haplotype diversity (HD) and discrimination capacity (DC) of 27 Yfiler were 0.9997 and 0.9675, respectively, which demonstrated that the 6-dye and 27-plex system has sufficient system effectiveness for forensic applications in Maoming Han. What is more, the phylogenetic analyses indicated that Maoming Han, which is a Southern Han Chinese population, has a close relationship with Meizhou Kejia, which uncovered that the role of the gene flows from surrounding Han populations in shaping the genetic pool of Maoming Han cannot be ignored. From the perspectives of genetics, linguistics, and geographies, the genetic structures of Han populations correspond to the patterns of the geographical-scale spatial distributions and the relationships of language families. Nevertheless, no exact genetic evidence supports the intimate relationships between Maoming Han and Tai-Kadai language-speaking populations and Han populations of Central Plains in the present study.

8.
Front Genet ; 12: 676917, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108995

RESUMO

Guangdong province is situated in the south of China with a population size of 113.46 million. Hakka is officially recognized as a branch of Han Chinese, and She is the official minority group in mainland China. There are approximately 25 million Hakka people who mainly live in the East and North regions of China, while there are only 0.7 million She people. The genetic characterization and forensic parameters of these two groups are poorly defined (She) or still need to be explored (Hakka). In this study, we have genotyped 475 unrelated Guangdong males (260 Hakka and 215 She) with Promega PowerPlex® Y23 System. A total of 176 and 155 different alleles were observed across all 23 Y-STRs for Guangdong Hakka (with a range of allele frequencies from 0.0038 to 0.7423) and Guangdong She (0.0047-0.8605), respectively. The gene diversity ranged from 0.4877 to 0.9671 (Guangdong Hakka) and 0.3277-0.9526 (Guangdong She), while the haplotype diversities were 0.9994 and 0.9939 for Guangdong Hakka and Guangdong She, with discrimination capacity values of 0.8885 and 0.5674, respectively. With reference to geographical and linguistic scales, the phylogenetic analyses showed us that Guangdong Hakka has a close relationship with Southern Han, and the genetic pool of Guangdong Hakka was influenced by surrounding Han populations. The predominant haplogroups of the Guangdong She group were O2-M122 and O2a2a1a2-M7, while Guangdong She clustered with other Tibeto-Burman language-speaking populations (Guizhou Tujia and Hunan Tujia), which shows us that the Guangdong She group is one of the branches of Tibeto-Burman populations and the Huonie dialect of She languages may be a branch of Tibeto-Burman language families.

10.
Int J Legal Med ; 135(4): 1295-1317, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33847803

RESUMO

Due to the formation of the Qiongzhou Strait by climate change and marine transition, Hainan island was isolated from the mainland southern China during the Last Glacial Maximum. Hainan island, located at the southernmost part of China and separated from the Leizhou Peninsula by the Qiongzhou Strait, laid on one of the modern human northward migration routes from Southeast Asia to East Asia. The Hlai language-speaking Li minority, the second largest population after Han Chinese in Hainan island, is the direct descendants of the initial migrants in Hainan island and has unique ethnic properties and derived characteristics; however, the forensic-associated studies on Hainan Li population are still insufficient. Hence, 136 Hainan Li individuals were genotyped in this study using the MPS-based ForenSeq™ DNA Signature Prep Kit (DNA Primer Set A, DPMA) to characterize the forensic genetic polymorphism landscape, and DNA profiles were obtained from 152 different molecular genetic markers (27 autosomal STRs, 24 Y-STRs, 7 X-STRs, and 94 iiSNPs). A total of 419 distinct length variants and 586 repeat sequence sub-variants, with 31 novel alleles (at 17 loci), were identified across the 58 STR loci from the DNA profiles of Hainan Li population. We evaluated the forensic characteristics and efficiencies of DPMA, demonstrating that the STRs and iiSNPs in DPMA were highly polymorphic in Hainan Li population and could be employed in forensic applications. In addition, we set up three datasets, which included the genetic data of (i) iiSNPs (27 populations, 2640 individuals), (ii) Y-STRs (42 populations, 8281 individuals), and (iii) Y haplogroups (123 populations, 4837 individuals) along with the population ancestries and language families, to perform population genetic analyses separately from different perspectives. In conclusion, the phylogenetic analyses indicated that Hainan Li, with a southern East Asia origin and Tai-Kadai language-speaking language, is an isolated population relatively. But the genetic pool of Hainan Li influenced by the limited gene flows from other Tai-Kadai populations and Hainan populations. Furthermore, the establishment of isolated population models will be beneficial to clarify the exquisite population structures and develop specific genetic markers for subpopulations in forensic genetic fields.


Assuntos
Impressões Digitais de DNA/métodos , Frequência do Gene , Genética Populacional , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Povo Asiático/genética , China/etnologia , Conjuntos de Dados como Assunto , Feminino , Marcadores Genéticos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Filogenia , Análise de Sequência de DNA
11.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33558418

RESUMO

The expansion of anatomically modern humans (AMHs) from Africa around 65,000 to 45,000 y ago (ca. 65 to 45 ka) led to the establishment of present-day non-African populations. Some paleoanthropologists have argued that fossil discoveries from Huanglong, Zhiren, Luna, and Fuyan caves in southern China indicate one or more prior dispersals, perhaps as early as ca. 120 ka. We investigated the age of the human remains from three of these localities and two additional early AMH sites (Yangjiapo and Sanyou caves, Hubei) by combining ancient DNA (aDNA) analysis with a multimethod geological dating strategy. Although U-Th dating of capping flowstones suggested they lie within the range ca. 168 to 70 ka, analyses of aDNA and direct AMS 14C dating on human teeth from Fuyan and Yangjiapo caves showed they derive from the Holocene. OSL dating of sediments and AMS 14C analysis of mammal teeth and charcoal also demonstrated major discrepancies from the flowstone ages; the difference between them being an order of magnitude or more at most of these localities. Our work highlights the surprisingly complex depositional history recorded at these subtropical caves which involved one or more episodes of erosion and redeposition or intrusion as recently as the late Holocene. In light of our findings, the first appearance datum for AMHs in southern China should probably lie within the timeframe set by molecular data of ca. 50 to 45 ka.


Assuntos
Arqueologia , Cavernas/química , DNA Antigo/análise , Fósseis , Sedimentos Geológicos/análise , Migração Humana/história , Datação Radiométrica/métodos , China , História Antiga , Humanos
12.
Am J Phys Anthropol ; 174(2): 363-374, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33241578

RESUMO

OBJECTIVES: Subbranches of Y-chromosome haplogroup C2a-L1373 are founding paternal lineages in northern Asia and Native American populations. Our objective was to investigate C2a-L1373 differentiation in northern Asia and its implications for Native American origins. MATERIALS AND METHODS: Sequences of rare subbranches (n = 43) and ancient individuals (n = 37) of C2a-L1373 (including P39 and MPB373), were used to construct phylogenetic trees with age estimation by BEAST software. RESULTS: C2a-L1373 expanded rapidly approximately 17.7,000-14.3,000 years ago (kya) after the last glacial maximum (LGM), generating numerous sublineages which became founding paternal lineages of modern northern Asian and Native American populations (C2a-P39 and C2a-MPB373). The divergence pattern supports possible initiation of differentiation in low latitude regions of northern Asia and northward diffusion after the LGM. There is a substantial gap between the divergence times of C2a-MPB373 (approximately 22.4 or 17.7 kya) and C2a-P39 (approximately 14.3 kya), indicating two possible migration waves. DISCUSSION: We discussed the decreasing time interval of "Beringian standstill" (2.5 ky or smaller) and its reduced significance. We also discussed the multiple possibilities for the peopling of the Americas: the "Long-term Beringian standstill model," the "Short-term Beringian standstill model," and the "Multiple waves of migration model." Our results support the argument from ancient DNA analyses that the direct ancestor group of Native Americans is an admixture of "Ancient Northern Siberians" and Paleolithic communities from the Amur region, which appeared during the post-LGM era, rather than ancient populations in greater Beringia, or an adjacent region, before the LGM.


Assuntos
Indígena Americano ou Nativo do Alasca , Povo Asiático , Cromossomos Humanos Y/genética , Migração Humana/história , Antropologia Física , Ásia Setentrional , Povo Asiático/classificação , Povo Asiático/genética , Povo Asiático/história , História Antiga , Humanos , Masculino , América do Norte , Filogenia , Indígena Americano ou Nativo do Alasca/classificação , Indígena Americano ou Nativo do Alasca/genética , Indígena Americano ou Nativo do Alasca/história
14.
Hum Biol ; 91(4): 257-277, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32767896

RESUMO

The Fujian Tanka people are officially classified as a southern Han ethnic group, whereas they have customs similar to Daic and Austronesion people. Whether they originated in Han or Daic people, there is no consensus. Three hypotheses have been proposed to explain the origin of this group: (1) the Han Chinese origin, (2) the ancient Daic origin, (3) and the admixture between Daic and Han. This study addressed this issue by analyzing the paternal Y chromosome and maternal mtDNA variation of 62 Fujian Tanka and 25 neighboring Han in Fujian. The southern East Asian predominant haplogroups (e.g., Y-chromosome O1a1a-P203 and O1b1a1a-M95, and mtDNA F2a, M7c1, and F1a1) had relatively high frequencies in Tanka. The interpopulation comparison revealed that the Tanka have a closer affinity with Daic populations than with Han Chinese in paternal lineages but are closely clustered with southern Han populations such as Hakka and Chaoshanese in maternal lineages. Network and haplotype-sharing analyses also support the admixture hypothesis. The Fujian Tanka mainly originate from the ancient indigenous Daic people and have only limited gene flows from Han Chinese populations. Notably, the divergence time inferred by the Tanka-specific haplotypes indicates that the formation of Fujian Tanka was a least 1033.8-1050.6 years before present (the early Northern Song dynasty), indicating that they are an indigenous population, not late Daic migrants from southwestern China.


Assuntos
Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Genética Populacional/métodos , Povo Asiático/genética , China/etnologia , DNA Mitocondrial/história , Etnicidade/genética , Feminino , Testes Genéticos/métodos , Haplótipos/genética , História Antiga , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética
15.
J Hum Genet ; 65(9): 797-803, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32313196

RESUMO

Aksay Kazakhs are the easternmost branch of Kazakhs, residing in Jiuquan city, the forefront of the ancient Silk Road. However, the genetic diversity of Aksay Kazakhs and its relationships with other Kazakhs still lack attention. To clarify this issue, we analyzed the non-recombining portion of the Y-chromosome from 93 Aksay Kazakhs samples, using a high-resolution analysis of 106 biallelic markers and 17 STRs. The lowest haplogroup diversity (0.38) was observed in Aksay Kazakhs among all studied Kazakh populations. The social and cultural traditions of the Kazakhs shaped their current pattern of genetic variation. Aksay Kazakhs tended to migrate with clans and had limited paternal admixture with neighboring populations. Aksay Kazakhs had the highest frequency (80%) of haplogroup C2b1a3a1-F3796 (previous C3*-Star Cluster) among the investigated Eurasian steppe populations, which was now seen as the genetic marker of Kerei clan. Furthermore, NETWORK analysis indicated that Aksay Kazakhs originated from sub-clan Kerei-Abakh in Kazakhstan with DYS448 = 23. TMRCA estimates of three recent descent clusters detected in C2*-M217 (xM48) network, one of which incorporate nearly all of the C2b1a3a1-F3796 Aksay Kazakhs samples, gave the age range of 976-1405 YA for DC1, 1059-1314 YA for DC2, and 1139-1317 YA for DC3, respectively; this is coherent with the 7th to the 11th centuries Altaic-speaking pastoral nomadic population expansion.


Assuntos
Povo Asiático/genética , Cromossomos Humanos Y/genética , Etnicidade/genética , China , Marcadores Genéticos , Variação Genética , Genética Populacional , Haplótipos , Humanos , Masculino , Filogenia , Polimorfismo de Nucleotídeo Único
16.
Ann Hum Biol ; 47(3): 294-299, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32281408

RESUMO

Background: Due to their long history, complex admixture processes and large population sizes, more research is required to explore the fine genetic structure of Han populations from different geographic locations of China.Aim: To characterise the paternal genetic structure of the Han Chinese in Henan province, which was once the central living region of the ancient Huaxia population, the precursors of the Han Chinese.Subjects and methods: We sequenced Y chromosomes of 60 males from Zhengzhou, Henan Province, and reconstructed a phylogenetic tree for these samples with age estimation.Results: We observed high diversity of paternal lineages in our collection. We found that the in situ Neolithic expansion of the "Major lineages" contributed to a large portion of the paternal gene pool of the Han population in Henan Province. We also detected a large number of "Minor lineages" that diverged in the Palaeolithic Age.Conclusion: We suggest that the high genetic diversity in the paternal gene pool of modern Han populations is mainly attributed to the reservation of a larger number of lineages that diverged in the Palaeolithic Age, while the recent expansion of limited lineages contributed to the majority of the gene pool of modern Han populations. We propose that such a structure is a basal characteristic for the genetic structure of modern Han populations.


Assuntos
Cromossomos Humanos Y/genética , Frequência do Gene , Variação Genética , Herança Paterna , China , Humanos , Masculino
17.
J Hum Genet ; 64(8): 775-780, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31148597

RESUMO

The Y-chromosome haplogroup C2b1a3a2-F8951 is the paternal lineage of the Aisin Gioro clan, the most important brother branch of the famous Mongolic-speaking population characteristic haplogroup C2*-Star Cluster (C2b1a3a1-F3796). However, investigations on its internal phylogeny are still limited. In this study, we used whole Y-chromosome sequencing to update its phylogenetic tree. In the revised tree, C2b1a3a2-F8951 and C2*-Star Cluster differentiated 3852 years ago (95% CI = 3295-4497). Approximately 3558 years ago (95% CI = 3013-4144), C2b1a3a2-F8951 was divided into two main subclades, C2b1a3a2a-F14753 and C2b1a3a2b-F5483. Currently, samples of C2b1a3a2-F8951 were mainly from the House of Aisin Gioro clan, the Ao family from Daur and some individuals mainly from northeast China. Although other haplogroups are also found in the Ao family, including C2b1a2-M48, C2b1a3a1-F3796, C2a1b-F845, and N1c-M178, the haplogroup C2b1a3a2-F8951 is still the most distinct genetic component. For haplogroup C2b1a3a2-F8951, the time of the most recent common ancestor of the House of Aisin Gioro clan and the Ao family were both very late, just a few hundred years ago. Some family-specific Y-SNPs of the House of Aisin Gioro and the Ao family were also discovered. This revision evidently improved the resolving power of Y-chromosome phylogeny in northeast Asia, deepening our understanding of the origin of these two families, even the Mongolic-speaking population.


Assuntos
Cromossomos Humanos Y , Etnicidade/genética , Genética Populacional , Locos de Características Quantitativas , Alelos , Povo Asiático/genética , China , Ligação Genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Filogenia
18.
J Hum Genet ; 64(8): 815-820, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31164702

RESUMO

Genghis Khan's lineage has attracted both academic and general interest because of its mystery and large influence. However, the truth behind the mystery is complicated and continues to confound the scientific study. In this study, we surveyed the molecular genealogy of Northwestern China's Lu clan who claim to be the descendants of the sixth son of Genghis Khan, Toghan. We also investigated living members of the Huo and Tuo clans, who, according to oral tradition, were close male relatives of Lu clan. Using network analysis, we found that the Y-chromosomal haplotypes of Lu clan mainly belong to haplogroup C2b1a1b1-F1756, widely prevalent in Altaic-speaking populations, and are closely related to the Tore clan from Kazakhstan, who claim to be the descendants of the first son of Genghis Khan, Jochi. The most recent common ancestor of the special haplotype cluster that includes the Lu clan and Tore clan lived about 1000 years ago (YA), while the Huo and Tuo clans do not share any Y lineages with the Lu clan. In addition to the reported lineages, such as C3*-Star Cluster, R1b-M343, and Q, our results indicate that haplogroup C2b1a1b1-F1756 might be another candidate of the true Y lineage of Genghis Khan.


Assuntos
Povo Asiático/genética , Genealogia e Heráldica , Núcleo Familiar , Herança Paterna , China , Cromossomos Humanos Y , Loci Gênicos , Haplótipos , Humanos , Masculino , Filogenia , Polimorfismo de Nucleotídeo Único
19.
Ann Hum Biol ; 46(3): 261-266, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31208219

RESUMO

Background: Previous studies have suggested that the human Y-chromosome haplogroup Q1a1a-M120, a widespread paternal lineage in East Asian populations, originated in South Siberia. However, much uncertainty remains regarding the origin, diversification, and expansion of this paternal lineage.Aim: To explore the origin and diffusion of paternal Q-M120 lineages in East Asia.Subjects and methods: The authors generated 26 new Y chromosome sequences of Q-M120 males and co-analysed 45 Y chromosome sequences of this haplogroup. A highly-revised phylogenetic tree of haplogroup Q-M120 with age estimates was reconstructed. Additionally, a comprehensive phylogeographic analysis of this lineage was performed including 15,007 samples from 440 populations in eastern Eurasia.Results: An ancient connection of this lineage with populations in Siberia was revealed. However, this paternal lineage experienced an in-situ expansion between 5000 and 3000 years ago in northwestern China. Ancient populations with high frequencies of Q-M120 were involved in the formation of ancient Huaxia populations before 2000 years ago; this haplogroup eventually became one of the founding paternal lineages of modern Han populations.Conclusion: This study provides a clear pattern of the origin and diffusion process of haplogroup Q1a1a-M120, as well as the role of this paternal lineage during the formation of ancient Huaxia populations and modern Han populations.


Assuntos
Cromossomos Humanos Y/genética , Haplótipos/genética , China , Etnicidade/genética , Migração Humana , Humanos , Masculino , Filogenia , Filogeografia , Sibéria
20.
Am J Phys Anthropol ; 169(2): 341-347, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30889274

RESUMO

OBJECTIVES: The Hui people are the adherents of Muslim faith and distributing throughout China. There are two contrasting hypotheses about the origin and diversification of the Hui people, namely, the demic diffusion involving the mass movement of people or simple cultural diffusion. MATERIALS AND METHODS: We collected 621 unrelated male individuals from 23 Hui populations all over China. We comprehensively genotyped more than 100 informative Y-chromosomal single nucleotide polymorphisms and 17 Y-chromosomal short tandem repeats (STRs) on those samples. RESULTS: Co-analyzed with published worldwide populations, our results suggest the origin of Hui people has involved massive assimilation of indigenous East Asians with about 70% in total of the paternal ancestry could be traced back to East Asia and the left 30% to various regions in West Eurasia. DISCUSSION: The genetic structure of the extant Hui populations was primarily shaped by the indigenous East Asian populations as they contribute the majority part of the paternal lineages of Hui people. The West Eurasian admixture was probably a sex-biased male-driven process since we have not found such a high proportion of West Eurasian gene flow on autosomal STRs and maternal mtDNA.


Assuntos
Povo Asiático/genética , Cromossomos Humanos Y/genética , Etnicidade/genética , Fluxo Gênico/genética , Islamismo , Antropologia Física , China , Genética Populacional , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...